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Sfor strict sense optimal controls, then standard methods are not
adequate to prove it. There is a similar difficult in proving
existence of optimal controls with complete observations with
singular noise coefficient, if the term "complete observations" is
taken in the strict sense that depends on the past of the Wiener
process driving the system.



EXISTENCE OF OPTIMAL CONTROLS FOR

PARTIALLY OBSERVED DIFFUSIONS

WENDELL H. FLEMING AND ETIENNE PARDOUX

1. Introduction. In this paper we are concerned with the existence

of optimal controls for problems of the following kind. Let Xt

denote the process which we wish to control, Yt the observation

process, and Ut the control process, 0 < t < T, with T fixed

The state and observation processes are governed by stochastic

differential equations

(a) dXt = b(XtYt,Ut)dt + o(Xt,Yt)dWt* (1.1)

(b) dYt = h(Xt)dt + dWt.

X t has values in N-dimensional IR Yt values in IR and U t

values in % ciL X has given distribution P, and YO = 0.

0
In (1.1), W and W are independent standard Wiener processes, with

values in IR DJRM  respectively. The matrix a is thus N x D.

The problem is to minimize a criterion of the form

(1.2) J = E{ fF(XtUt)dt + G(XT)}.

It is customary to require that Ut be measurable with respect to

the a-algebra generated by the observations Ys, 0 < s < t. We

call this the strict sense version of the problem (§6). For

several years the question of proving a general theorem about existence

4 , -4
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of optimal controls in the strict sense has been open. We do not

obtain such a result here. In fact, our results together with a

counterexample of Varadhan (§6) strongly suggest that, if there is

indeed a general existence theorem for strict sense optimal controls,

then standard methods are not adequate to prove it. There is a

similar difficulty in proving existence of optimal controls with

complete observations with singular noise coefficient a, if the

term "complete observations" is taken in the strict sense that Ut

depends on the past of the Wiener process driving the system.

Instead of allowing only strict-sense controls, we obtain

existence of a minimum in a wider class of controls. Roughly speaking,

this wider class is obtained as follows. Let

(1.3) Z = exp[ h(Xs)'dY - JIh(Xs)12ds].tf0 s s 0

Then Wt,Y t are independent standard Wiener processes under a new
0

P by d= Z 1 . In the wider sense formulation we wish to require

merely that be independent of future increments Yr - Y for

t < r and independent of the W process, with respect to P. In

§2 we give a precise formulation of this idea, in which the control

is defined as the joint probability distribution measure w of

the processes Y,U.

Our method depends on introducing a "pathwise" version

At AY,U of an unnormalized conditional distribution measure for

jX t given past values of the observation process Y and the control
process U (§3). An important fact is the continuous dependence

1%
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of A ton Y,U and the initial distribution P' (Lemma 3.2). In

§4 we introduce a "separated" control problem, equivalent to the

original problem formulated in §2. The "state" in the separated

problem is the measure A t. In §4 we study the dynamics of At,

using a method of forward and backward partial differential equations.

Similar ideas were used in [131, for the nonlinear filter problem.

The forward equation (5.4) is linear parabolic (possibly degenerate)

with coefficients depending parametrically on observations Ytand

controls U t. Under suitable regularity assumptions, A thas a

density q(t,x), related in a simple way to a solution p(t,x) of

the forward equation via (5.6). Without the regularity assumptions,

one uses instead a weak sense version (5.4') of the forward equation.

We also show that A tsatisfies the Zakai equation (5.8) of non-

.1 linear filtering. The method of backward and forward equations

was applied to the nonlinear filter problem in [13], working

directly with the Zakai equation and its adjoint and allowing

correlations between the Wiener processes W,W driving the state and

observation equations. However, technical difficulties are encountered

in adapting that method to the control problem.

In [8] another "separated" control problem was considered.

In that formulation the "state" for the separated problem corre-

sponds to the (normalized) conditional distribution measure ofX

given past observations. Some of the results in [181 are proved under

assumptions not satisfied when X tis a controlled, partially

observed solution to (1.1a). Hence, the results of [8] are

.1 ~ complementary to those in the present paper.

A first existence theorem asserting that there is a control

minimizing J is proved in §4, when F =0 in (1.2). When F 0

LL



4

different methods are needed. In §7 we assume that the coefficient o

in (1.1a) is N x N nonsingular, and use methods of the L2 -theory

of parabolic partial differential equations.

In [4] Christopeit proved an existence theorem for optimal

stochastic controls under partial observations. In that work, the

observation process is a deterministic function of (part of) the past

trajectory of the state process, and the optimal control is sought in

a class of feedback controls. Both our results and our methods of

proof differ significantly from his.

1



2. Formulation of the problem. We make the following assumptions

about the functions appearing in (1.1).

(A1 ) a is a bounded, continuous N x D matrix-valued

function on 11 N+M. Moreover, o(.,y) is Lipschitz on N with

Lipschitz constant not depending on y E RM.

(A2) b(x,y,u) = (x,y) + b(x,y)u, where b ,b are
22

bounded, continuous functions on JRN+M Moreover, b (.,y) is

Lipschitz on N with Lipschitz constant not depending on

My EIR , for £ = 0,1.

0 N 1
Note that in (A2), b has values in R , while b has

N x L matrices as values.

N
We write C b RN) for the space of bounded continuous real-valued

functions on R N, and C0 OR N) for the space of continuous func-

tions with compact support. We write C kON),CkOR RN)fr hwrite )for the

spaces of functions whose partial derivatives of orders < k are
in CbORN), C0R N) respectively. Similarly we write C k (RNiR M,

C0O kkN
C0O R M)  if the functions are R -valued.

(A3 ) h E C2 RM.

In §7 we shall assume that a is nonsingular N x N. One

could also let b,u,h depend on t, with minor changes in the

results, and proofs. This would only be a generalization in §7, since

in §'s 2-6 t can be adjoined as an additional x component.

a L
(A4) k is a convex, compact subset of JR

Choose any T > 0 which will be fixed throughout the paper.

We formulate the control problem on the "canonical" sample space

'IF
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S x1 i 2 x 3

where Q0,fll, 2 are C([O,T]R M) with m = D,N,M respectively

and

R L 2 ([OT] c .

The elements w = (W,X,Y,U) of 0 satisfy

W(t) = (Wt(W),Xt(w),Yt(W),Ut(w)), 0 < t < T.

We give QO0,SIQ2 the usual norm topology; and Q3 the weak
2 3

topology, which is metrizable and separable since is compact [2,

p. 238]. Let

1 0 X 0 2 = 2 1

whose respective elements are pairs (W,X), (Y,U). Let

.57t(W) = {Ws, 0 < s < t}, with _Ft(X), Yt(Y) defined similarly.

Let

t(U) = ofVs, 0 < s < t}, Vt s

The elements of these a-algebras are subsets of Q0,...,PS3 re-

spectively. However, we can also regard thenm as a-algebras of
, or , with the obvious identifications. For

example A E jt(X) can be identified with !0 x A x o, x 03"

K .,4



7
We shall also use the o-algebras

t t t

, (Y) x (U

x ( W) x x 1 (U)

t t t t (W

We note that -9T(U) is the Borel o-algebra of f3 and thus

is the Borel o-algebra of 2.

Remark. Intuitively,by using the indefinite integral Vt instead

of U in defining 5t(U), we need not be concerned with changes
tt

in Ut on subsets of [0,T] of Lebesgue measure 0. An alternative

to our formulation would be to consider quadruples (W,X,Y,V) instead

of (W,X,Y,U), using the uniform norm on V. By (A2) the control

enters linearly in b. Hence, one can write, in the integrated form

of (l.la),

f = f b1(Xs Ys )dVs9

the right side being a Riemann-Stieltjes integral. This device

was used in [9], but we use here Ut instead.

Distribution of (W,X) conditioned on (Y,U). Let Y = Y., U = U

be given sample paths for the observation and control processes; thus

(Y,U) E 0 2 Consider equation (l.la) with initial data W0 = 0,

X0 = x. Assumptions (A1), (A2) imply the Ito conditions. There is

a solution to (1.1a) which is pathwise unique, and hence also unique

"1".
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in probability law. Let ,U denote the distribution measure ofx

(W,X) given (Y,U). Then rYU lies in the space of probability
x1

measures on YT By convergence of a sequence of probability

measures Pn to T we mean weak convergence, namely

fg(WX)d n - fQ g(W,X)dV for all g E

Lemma 2.1. 1
Y 'U depends continuously on x,Y,U.
x

This lemma is essentially known (cf. Stroock-Varadhan [14]).

However, for completeness we outline a proof in the Appendix.

Following the motivation described in §1, the formal

definition of admissible control is as follows.

Definition. An admissible control R is a probability measure on

(Q 2,Tv2 such that Y is a 7T, {.TV} Wiener process.
T T

The projection (Y,U) - Y maps onto Wiener measure.

The definition of admissible control requires, in addition, that

{ Usds be independent of Y -Yt for t < r < T.

Let 1 denote the set of all admissible controls ff. Given

a distribution p for X0 , each ff E 21 determines a joint

distribution measure P of (W,X,Y,Z) as follows. Define

-- P by
• 1 T ' P Y 'U (A by I N Y 'x,

TYU (A) fJ P (A)dp(x), A E T'

We then define Pf on f/T by

- - -. ' *- - ---

I _ __i
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0
(2.1) P,(dW,dX,dY,dU) P -Y'U(dW,dX)f(dYdU).

0

The projection of P under (W,X,Y,U) - (Y,U) is ff. The

family of probability measures VYU gives a regular conditional

distribution for (W,X). If g(W,X) is J1 -measurable, then
t

-_YU 2 rYU,E'g(WX) is V t-measurable, where we write B 'U , E1  for
t 0

expectations with respect to 'PI,UP. We then have for any

t -measurable P with El TH <

(2.2) E (7T 4j ) = EY ' () T - a.s.

We define P7 by

dP

(2 .3) 0 ZT '
d P7T

with ZT as in (1.3). Since h(x) is bounded, P1(Q) = En(ZT) = i.

For each (Y,U), W is a PY'U-standard Wiener process, and

X satisfies the stochastic differential equation (l.la) PY'U-as
0

With respect to P7, W and Y are independent standard Wiener

processes.

Lemma 2.2. Let Wt = Yt fh(Xs)ds. Then W,W are independent
0

standard Wiener processes under P and the stochastic differential

equations (l.la), (l.lb) hold P, - a.s.

W0
Proof. Since the pair (y) is a P.-stcndard Wiener process, of

dimension N + M, the Cameron-Martin-Girsanov formula and (2.3)

imply that (W) is a Pa-standard Wiener process. Since (l.la)

!I
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0 0
holds P7 T- a.s. and P1 << P., (1.1a) holds PR - a.s; while (1.1b)

holds by definition of W.

We have defined as admissible control a probability

measure 1 belonging to the class 91. Convergence of sequences

7 of admissible controls is taken in the sense of weak convergence
n

of probability measures. 91 is a metric space under (for instance)

the Prokhorov metric [2]. Moreover, 91 is a convex set.

Lemma 2.3. V is compact under weak sequential convergence.

Proof. Since every measure 7T E 21 projects onto Wiener measure

under (Y,U) - Y and the second component U lies in the compact

(weak topology) space L 2([0,T];%), tightness of ?I follows by

standard arguments. Hence [2, p. 37] it remains only to show that

W is closed. Suppose that 71n 7,R n E 9 We must show that Yn ' n"

is a 71, { 2 Wiener process. Since Rn projects onto Wiener
t n

measure for each n, so does 7. We need only verify that Yr - Yt

is independent of <2 for t < r. For this it suffices that
t

2 2 M
for any teasurable E Cb( 2 ) and f E CbOR )

f 2 P f(Y r-Yt)d = 2 2  1T L2 2 f(Y r 'Yt)d71 .

But this holds for each Rn , and we pass to the limit. This proves

Lemma 2.3.

In §6 we shall consider the subclass ?s of strict-sense

controls.

r'r



3. The unnormalized conditional distribution. We wish to introduce

an unnormalized conditional distribution of Xt  given controls

and observations up to t. Let us take a version of the
0

P -martingale Z such that Z is Yt-measurable for 0 < t < T.

Consider any f E Cb ON). By (2.2) with ip = f(X t)Zt,

2 YU

(3.1) EI(f(Xt)Zt = (f(X)z 0 < t < T, IT - a.s.

Let us rewrite (3.1) in such a way that it is defined for all

Y,U, riot just 7 - a.s, and depends continuously on (Y,U). See
Lemma 3.2 below. Since h E C2 RN RM we can integrate

h(Xs).dY by parts:

0 s

ft rt ft
h(X s)-dYs = h(Xt).Yt - Ys,1,sh(Xs)ds - IY-Vh(Xs)o(X s Ys)dWs,

where Y .Vh is the gradient in x of Y *h and
S s

( N a2  NX a.. (XYs) ?x.ax. + .bi(X,YsUs)ax"
(3.2) Ls  1 J i=l i

_,,~~i L i s h sakadoeao

. with a = oo'. For fixed Y,U, .- + L is the backward operator

corresponding to (1.1a). Let

*(3.3) e(s,x) Y- (aY5-VhY'-Vh) - Y,5 L h - }hi2,Is

where in (3.3) (aF,) = Jal 2 denotes the dot product in IRN  of

a with F, and denotes the dot product in IRM. From (1.3)

"; _ - .'A

I.
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V
zt = t exp Yt-h(Xt) exp Je(s,Xs)ds

where

V t 1
zt=exp[- f Y svh(X s)o(XSY s)dW - 2- f0(a(X s Y )Y.Vh(X ) Ys*V h(Xs)) ds.

For fixed (Y,U) let us define another probability measure pU

on(1 1
on , T) by

(3.4) dpY'U

dY,U T'

This corresponds to a change in drift coefficient in equation (1.1a)
~V

from b to b b aYs .Vh, and changes Ls  in (3.2) to the

operator

V
(3.5) L = L (aYs.Vh,V).

From (3.1) we then have

0 (f(Xt)ZtI t = YUfXt pYh(Xt) exp e(S,X )ds),2

where the right side is now defined for all (Y,U) E Q 2, not merely

* -a.s. For fixed (Y,U) the right side is a bounded linear func-

tional on CbR N). Hence, for every (Y,IJ) E 0 2 and 0 < t < T
,* there exists a measure At  on the Borel o-algebra N such that

tftS"(3.6) <f , At 'U> = Y'U(f(Xt)ex(Yh(Xt)) exp fe(sX)dS),

_ - - *-~-~-- r-
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for all f E Cb lRN ) where for any measure v with vORN ) < )

<f,v> = Nf(x)dV(x).

Definition. AY,U is the unnormalized conditional distribution
t

measure.

The unnormalized conditional distribution measure satisfies,

for all f E Cb RN),b
(3.7) <f,A Y'U = Ef(f(XtZ 2

t m~(tZtI t'y

As is well-known, the (normalized) conditional distribution of X
t

satisfies, for all f E CbORN),

Y ,U<f'At>

E{(f(Xt) 2 ft)
t <1,A Y,U>< , t

, where EI denotes expectation with respect to the measure P7

defined by (2.3). For fixed t, let

(3.8) y, t,! (3.8) v 0  x) x (f(Xt)exp(Yt'h(Xt))exp Oe(s'Xsd

where E x denotes expectation with respect to the probability

measure vY,U in (3.4) for initial state X = x. For initial

distribution 4 for XO

vyUE ,(g(X)) f=NPYU(g(X) d (x).

IR

2&
-(w --
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Therefore, by (3.6), (3.8)

(3.9) ,fA AY,U> = <vY~tJ,U>(3.9 <f t  0 U

for all (Y,U) E C2 and f E Cb IRN).

In §5 we shall see that (3.9) has a natural interpretation

in terms of solutions to forward and backward partial differential

equations.

Remark. We shall later wish to consider AtYU corresponding tot

any P > 0 with iORN ) N< , not merely for probability measures P

on -GR ). Given Y,U, and P, the right side of (3.9) is a

bounded, nonnegative linear functional of f, by (3.8). This

Y,U
gives an alternate way to define the measure At  without the

restriction IOR ) = 1, in such a way that (3.9) holds.

Lemma 3.1. (a) v Y' (x) is a continuous function of (xYU)

N
(b) Given f E CO R) and a > 0, there exist

c, k > 0 (depending on f,a and bounds for Jbi, o10, IVhI),such

that IvYU (x)l < c exp(-kx) for all x EIRN  and Y,U such that

* IYII <  a.

Proof. By Lemma A.1 (Appendix) VYU depends continuously on
___x

x,Y,U. Let xn -* x, Y n Y, U n U, and let (for fixed t)

3t
T n (X) = f(Xt)exp(Ynth(Xt))exp e n(S,X s)ds

(X) --f(Xt)exp(Yt'h(Xt))exp e(sX )ds,t t ' S

.s-.

. .. . .
$ .. . . . .V . . . . _ _ . . .. 'S - " - -
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where en  is defined by (3.3) with Y,U replaced by Yn ,Un. For

any compact r c C([O,TIRN), fe nds -* feds as n - *, uniformly0 n 0

on r. This is proved by the same reasoning used in the proof of

Lemma A.1. Then T - T uniformly on r. From this we conclude
I Y 'UnY ,U

that v n (xn ( X) 'U as n + , which proves (a).

To prove (b), U5s is bounded by (A4 ). For HJYI < a,

t' h(Xt) and e(s,X s) are bounded. Hence, for some c 1 ,

Vy UIvY'U(x)l -< ClP x (t E spt f).

However, 1Y x a.s.x

dXt = b(t,Xt)dt + dWt ,
V t

b = b - aY "Vh, Wt = Wt + vh(Xs)o(X s,Ys )ds

V vy Y'_v
and W t is a P ' Wiener process. For J YJ < a, b is bounded;

and a is bounded by (A1 ). By standard estimates

IXt-X1 < c2 1111 +cit, 4t = 'odW

P xa' (Xt E spt f) < P' (11411 > kljxj - k2 )

for some k > 0 and k2  (11 11 is as usual the sup norm). Using

the fact that a is bounded and an exponential martingale inequality,
?
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PVx  (111 > klIxj k2 ) < c3exp(-klxl)

for some c3, k > 0. See for example [14, p. 871. This proves (b).

For r > 0 let

N
r= > 0 on q(oRN): 1111ll < ri,

where I Ijjll PI)R N We use vague convergence for sequences of

measures: v n v means that <f,v n> - <fv> for all f E C0 ORN

The next lemma asserts continuous dependence of AYU on P,Y,U
t

for fixed t, provided we restrict P to -4rr (see the Remark

preceding Lemma 3.1).

Lemma 3.2. AY, is a continuous function of i-,Y,1T, on -r x Q2.
t

Proof. Let wn n i
' (Y nUn) - (Y,U). Given f C C0ORN) let

Y U

vn (X) = v0n n(x), v(x) : v W(x).

By (3.9) it suffices to show that

(*) lim <vn Vn > = <VV>.

By Lemma 3.1(a), x n x implies v n(x) v(x). Hence v n v
nyLma .() n n n

uniformly on compact subsets of RN. Since Yn Y, j]Yn [ < a

i for some a. By Lemma 3.1(b), v n(x) -, 0 as Ixl -. , uniformly

with respect to n. Since [Il[ < r, this implies (*) and hence

Lemma 3.2.

(No
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4. The "separated" control problem. As in (1.2) let

rT
(4.1) J(E) -- E {J F(Xt,UJt)dt + G(XT)),

with E the expectation with respect to the probability

measure P7 in (2.3). The minimum problem is: given a distribution

measure P for X 0, find a control DE 21 such that Jn*) < ,J(1)

for all TI E 1.

(A5) F,G are continuous, and F > 0, G > 0. There exists

R E ?I such that J(R) < w.

We sometimes impose the stronger condition:

(A) F,G are continuous, F > 0, G > 0, and for some

positive C,m, Z > m

IF (x,u) < C (1+ xl m) , I C,(x) < c (1 + lxi ) <lxi P <

Since Xt  satisfies the stochastic differential equation

(1.1a) with bounded coefficients b,o, J(P) < for all v E 21

provided that (A') holds. See [10, p. 48].

From (2.3) and the fact that XtU are t-measurable

0 T
J = If{ ZF(XtUt dt + ZTG(XT)}.

Upon taking conditional expectations and using (3.7)

13 F I: (XtPUt) )dt + I, - - Y

ffT <F( ,ut),AY'U>dt +<G,AY'U,}d-R(Y,U).
(4.2) J(11) = F( t t T

V*0



18

In the separated problem, we regard the unnormalized
conditional distribution measure At = AYU as the "state",

t

and (4.2) as the criterion to be minimized. Initially, A0 =1.

The dynamics of the measure-valued process A will be described
t

in §5.

In our formulation, the separated control problem is

completely equivalent to the problem originally formulated in §2.

An optimal control U for either problem is also optimal for

the other.

In the case F = 0 we can now prove the existence of an

optimal n*. In §7 we shall prove another existence theorem, with

F $ 0, using methods of partial differential equations. One

cannot, in general, reduce F $ 0 to F = 0 by adding a new

state variable since linearity would then no longer hold in (A2, §2.

Theorem 4.1. Let F = 0. There exists I E 1l such that

j(f ) (.(U) for all 7 E W.

Proof. By Lemma 2.3, ?1 is compact. It suffices to show that

.1(7') = f <G,A T U>d7 (Y,J)

is lower semicontinuous on ?I. For P E C0 ORN), i E C bR1

0 < < 1, H >0, let

J(T1) = II[<pG,AY U>]dn(Y,U).
£2

--,w
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By Lemma 3.2, with V fixed, the integrand is a bounded continuous

2function on Q2 .Hence J is continuous on 9.. Let P = Pn'

H = n  be increasing sequences such that Pn (x) - l, Hn (z) z as

z C o. Then J(n) is the limit of the corresponding increasing

sequence Jn (R), which implies that J(T) is lower semicontinuous

on I.

i

I2



20

5. Dynamics of At. We begin by imposing rather stringent

regularity conditions on the coefficients in (1.1), and by assuming

that the initial distribution P has a density po E Co N). Then At

turns out to have a density q(t,x) which obeys the Zakai

stochastic partial differential equation , as in case of nonlinear

filtering. However, it is more convenient to consider instead

p = q exp(-Yth), which obeys the partial differential equation

(5.4). Later in the section we drop the regularity assumptions,

and obtain the same equation in a weak form.

2The regular case. We fix (Y,U) E , and for the present assume

that U is continuous on [0,T]. We also assume for the present

0 1 Nthat, for fixed Y,o,b b ,h are of class C b ( . Given t > 0

and f E COR N consider the following "backward" partial differ-

ential equation

dv V
(5.1) U + Lsv + e(s)v = 0, 0 < s < t,

v(t) = f exp(Yth),

*V

where we have written v(s),e(s) for v(s,'),e(s,') and Ls  is

defined by (3.5). The Cauchy problem (5.1) has the (unique)

probabilistic solution

• VY,U. It

(5.2) v(s,x) = Lsx [(Xt)exp(Yt'h(Xt))ex p  e(U,X 0 )d0],

U V
where , is the distribution measure of (WtX satisfying

sx t

q7.

-- _ - . _ , .. , ,

-I
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dXt = bdt + Od, s < t < T, with Xs = x (in particular,

PY, = P By (3.8)

(5.3) v(0) = Y 'U

Under our regularity conditions, v(s) E COR N ) for 0 < s < t.

This follows from the smooth dependence on the initial state x of path-

wise solutions X to dXt = 9dt + odWt, Xs = x, with Wt  a fixed

Wiener process on some ( ,{ t},P). By essentially the same proof

as [10, p. 74] dv/ds is continuous and (5.1) holds. Moreover,

each partial derivative of any order of v in the variables

XlP*,, n  tends to 0 exponentially as Ixi --. For instance by

replacing X by X and EYU by E = E- in (5.2), and differentiat-sx P

ing with respect to xi, we get an estimate

IVx.(s,x) 1 < C max FL(Xfi()()
1 sTt f i

with i = aT/axi and Xf the indicator function of the event X

Xt E spt f. By [10, p. 61], FICi i) 1p  is bounded (independent of

t and x) for each p > 0. By taking p = 2 and using Cauchy-

Schwartz we get

IVx.(S,X)l < C[P(Xt  E spt f)]l1/2

'* 1

Since P(Xt E B) = YU(Xt E B), the proof of Lemma 3.1b then shows

that vx (s,x) - 0 exponentially as lxi . Similarly, higher

order derivatives of v tend to 0 exponentially as lxI , using the

fact that partial derivatives of X of all orders with respect to

*Xl,...,x n  have bounded expectations 110, p. 61].

Let us also consider the following initial value problem for

the equation adjoint to (5.1):" *
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(5 4) dpi =v,
(5dt Ltp + e(t)p, t > 0,

p(O) =P'

where P0 E C0IR). The time reversal s = T - t changes (5.4)V

into a problem of the same form as (5.1), but with Ls  replaced by

another degenerate parabolic operator L' and e(s) by another
s

e'(s). Therefore, (5.4) has a unique solution with p(t) c ORN)

and with all partial derivatives of any order in xl,... ,xN tending

to 0 exponentially as 1xj ---

Let us write ( , ) for scalar product in L2 RN).

Integrations by parts imply (v(t),p(t)) = constant. In particular,

Y'U~p
(v(t),p(t)) = (v0' P ).

If p0  is the density of P, then we have from (3.9) since

v(t) = f exp(Yt.h)

(5.5) f P(t,x)exp(Yt.h(x))f(x)dx = <f,A Y,>.
N t

IR

Let

(5.6) q(t,x) = p(t,x)exp(Yt'h(x)).

(of course, q = qYU depends on the observation and control

trajectories.) Then (5.5) implies that q(t) is the density of

the unnormalized conditional distribution measure A A ,U
t t

under the above regularity assumptions. The partial differential
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equation (5.4) determines the dynamics of p(t), hence also of

q(t).

Equation (5.4) is a linear partial differential equation

in which the processes Y,U enter parametrically. In contrast,

the Zakai equation for q(t), see (5.8) below, is a stochastic

partial differential equation driven by the Y process. The

technique of replacing the Zakai equation by (5.4) is analogous

to the technique of Doss [7] and Sussmann [15] for reducing

certain finite dimensional Ito-sense stochastic differential

equations to ordinary differential equations depending parametri-ally

on a Wiener process. The same idea has been used in nonlinear

filtering by Liptser-Shiryaev [12], Clark [5], and others. See

Davis [6].

The general case. Let us return to the assumptions (A1 )-(A3 ) on

0 1 2a,b ,b ,h. We consider fixed (Y,U) C2, and any distribution P

for X0. Let us rewrite (5.4) in a weak form. Define the measure

A by
t

(5.7) <g, t> <g exp(-Yt'h),At>, g Cb(IRN).

In the regular case, At has density p(t). By multiplying (5.4)
N

by g E C0 1R ) and integrating by parts, we get

d ~ VN(5.4') <g, t> =< A > + <g(t > , C0 N

This is the weak form of (5.4). The initial data are now A vi.

t0

IL I. _ _
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Theorem 5.1. Equation (5.4') holds, for any (Y,U) E Q2, any

g E Cb RN ) and initial distribution P for X0.

Proof. For g E Co N (5.4') holds in the regular case. For fixed

1N
Y, take a ,b0 ,b ,h of class C OR, uniformly bounded and

n n n nb

tending uniformly to o,b 0 ,b l h as n + with partial

derivatives a ,b0 b I h uniformly bounded. Moreover, let U
x. x.x .' xx " n

tend to U almost everywhere on [0,T], Unt E 2, and p n tend

weakly to p, where Un  is continuous on [0,T] and pn has
00N n n where the subscriptn

density no C0OR ). Let nx nx P

means that O,b ,h are replaced by n ,b nhn ,  = 0,1.

V VY, U
Lemma A.1 implies that P nx n - P if x - x as n Let

f E C0 RN). The same proof as for Lemma 3.1(a) implies that

von (X) = F xn(f(Xt)exi(Y t*h(Xt)exp Vn(S,Xs)ds)

tends uniformly on any compact set to vY'U(x). Moreover, by

Lemma 3.1(b), v on(x) - 0 as IxI -* uniformly with respect to n.

Let A be the corresponding unnormalized conditional distribution,
nt

with Ano p n" By (3.9)

<f,A nt> < <Von',P >, <f,A t> =<v0,p>,

' nno

where v v Y,U. Then <v W > -* <v0, 1>. Since this is truewhee 0 
=

0  Thn<on' n <0 "

for every f E C ORN) , A nt At  vaguely as n o with flAntil

bounded. From (5.7), Ant + At vaguely with IAnt 1I bounded.

We rewrite (5.4') in the regular case in integrated form:

SA t
<g, = > <1 <L ng, >ds + <en(S)g,^sn>dS.

<g tn> 1< > +u 0 sng sn 0on s
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For each g E C 0 (RN), Lsng , e n(s) are uniformly bounded and tend

v N
to Lsg,e(s) uniformly on JR , for almost all s E [0,T].

By passing to the limit we get (S.4'),when g E CRN), Finally,
0

2 N N V
we approximate g E COR) by g C0OR) such that g ,Lsg

bn 0 ns nv
are uniformly bounded and tend to g,Lsg as n , uniformly on

compact subsets of JRN . By passing to tile limit in (5.4') we get

Theorem 5.1.

We do not have a uniqueness result for equation (5.4'), in

contrast with the nondegenerate case to be considered in §7. More-

over, in §7 we will be able to use results from the theory of

parabolic PDE concerning the continuous dependence of solutions

on the coefficients to get a stronger existence theorem for an

optimal stochastic control.

The Zakai equation. The unnormalized conditional distribution At

satisfies the following (Zakai) equation, written in a weak form.
0 2

Recall that Y is a P, 2.' I -brownian motion for every

admissible control N.

Theorem 5.2. For every f E C2 ORN

'1

(5.8) d<f,A t> = <L tf,A t>dt + <hfA t>'dY t

Proof. Let (t,x) f(x)exp(Yt.h(x)). Then

<f,A t> = (t),At>,

4.

p. -

* *.. . . j. -\
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where as before we set P(t) = w(t,). For fixed x, the Ito

differential rule implies that

dP =- yjh1 2dt + h-dY.

Fiven t > 0, we partition [O,t] into m subintervals [tJ l,tjI

of length m t. Then

m

<fA > -<f'A > = Y <(t)A. - At >
j=J i j-1
m~

<+ I < ( t ),At >

j=l t-1
!m t.

fJ [<Ls (t) + e(s)4(t.),is >]ds

j-1

t.

+ ft j 1 <1(s)ih12 , it  >ds
j=l j 1  j-I

+. <f(s)h,A >'dY

j =l t j 1  
j - i s

(To justify the exchange of stochastic and Lebesgue integrals see the

Note below.) For fixed Y,U,

i<4P(s)hA > - < (s)h,At >1

if s s+ <e(O)P(s)hA60>j-1

< c(s-tj-1 ) < cm-1 T,

I

!7
___, - --... .. ."
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where c depends on Y,U. Hence as m the last term tends in
0 t

P.-probability to 0<(s)h,As>'dY By using a similar estimate

for the integrand in the middle term, and elementary estimates for

the first term, we get

<f,At > - <f,A > = f<L(s) + e(s)i(s) + 1 (s)jh I A s>dS

It

+ f <i(s)hA >'dY *

A straightforward calculation, using (3.2), (3.3), (3.5) gives

V 1 2
exp(Y Sh)LS f = L sY(S) + e(s),(s) + f P(s)IhI

Moreover, from (5.7)

S h)1 fA > <L f,As >

<(s)h,A > = <exp(Y h)hf,A > <hf,A >.
S s SS "

Therefore

ft
<f,At> - <f,Ao> = J <Lsf,AS>ds + f<hf,A >dY

This is the integrated form of (5.8), and proves Theorem 5.2.

I,

f7

* -*-
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Note. In the proof we have used

t.

(5.9) <'(s)h,A>'dY =<;,A>
t-1

where for brevity we now write A = A and where (pointwise
ti-1

on IR )

t. t.
S1 rJ2

= (s)h.dYs = 'P(t.) - (tj- 1 ) - t. f (s) Ih Idx.
fj -1 tj -1

N
The functions ?,P(s)h are bounded and uniformly continuous on IR

The bounds and moduli of continuity depend on f and IY j, but

not on s. For n = 1,2,..., partition B = {Ixj < n} intonn An -1 n An "

Borel sets AI,''' A of diameter < n and choose xi E A
nThen

t.
Sx n  n) ] d

(S.10) [ (s,x)h(x)A(A dY s (x)(A ).
ft 1 1
j-1

For each (Y,U), the right side tends to <',A> as n c o. The

sum in brackets on the left side tends to <(s)h,A> uniformly

with respect to s. Hence the stochastic integral converges in

probability to the left side of (5.9) as n [10, p. 11, IV].

This proves (5.9).

Theorem 5.3. For K = 1,2,... ,m > 0

m m

* 51) 027 K 2 7 K(5.11) E[t(<(l+lxl l',At >K  < C<(l+lxlZZI>

'i,.~,

• - -s--- * -



29

where C depends on K,m, and t (but not on T' E 21).

Proof. For 0 < a < 1, let

m

fc(X) lx 2) exp[-c(l+lxl2 ) 12 .

Any easy calculation shows that f E Cb2MN) and IL f f

for suitable C1 depending on m. The Zakai equation (5.8) and

Ito differential rule imply

dfA = >K- f At>

d<f(A t>K [K<faAt> <Lt t >

+ K(K-1)<f,,At>K-2 [ <hfA t >1 2 ]dt

+ K<hfA t> K-ldyt .

For a > 0 let I = inf{t: 1lAtil > a}. From (3.6) with f = 1,

2IlA I = <1 ,At> is continuous in t and {& t1-adapted. Hence a

is a stopping time. Let X be the indicator function of theseta

{s < I } Then

0 K >K
ET<f aAt^ = <> a

° 't t  K-1

+ KE Xa <f A s>K- <L f ,A >ds

o ft K -2 I h 1
4 + K(K-1)Ef f t <f A> I<hf,As>I2 ds.

We have since f. > 0 and ILsfal :S Clfa,
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< L AtA f> A S <> K 2c 1 <f A >Ks

<hf+ (KG + >1-lI~I <f j0Xal <a')

However, X a <f a A s> < <flA, AT >. Gronwall 'S inequality then implies
a

0K K
E T< f vA tAT > < f

a

C = exp[(KG1 ++ K(K-l)lIhi 12 )t].

We let a + and then a+0 to obtain (5.11).
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6. Strict-sense admissible controls. We recall the notations

of §2.

Definition. We say that I E ?I is a strict-sense admissible control

if there exists u: 02 + S3 such that u is F T (Y), T(U))
2

measurable for 0 < t < T, and for every T-measurable V > 0

f I(Y,U)dT = (Y,u(Y))dw,
2 f12

where w is Wiener measure on (Q2 '-1,(Y))
"

For any u1 E91

T(dY,dU) = (dU)w(dY),

where nY  is a regular conditional distribution for R. Strict-

sense admissible controls are those such that wI'= 6u(y) a.s.,

where 6 = Dirac measure on (P3 $MT(U)) concentrated at u. BA,
u ' T

admitting in §2 controls " V 1 which are not strict-sense, we

are in effect allowing the choice of to depend on auxiliaryt o

randomizations. Let

ls

I= {strict-sense admissible n}.

Corresponding to 7T E 'As there is a causal functional Y such

that i t = Y(t,Y) Lebesgue x f-almost everywhere [16). Causal is

in the sense that Y = Y' for 0 < s < t implies Y(t,Y) = Y(t,Y')
s s

Mfor Y,Y' E C([O,TI ). (We do not use this result in this paper.)

It can be shown that ?Is  is dense in 11. We shall not prove this

here. However, we shall show that the infimum of J(ff) on ?Is
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is the same as on 11 (Theorem (.I). For this purpose we consider

approximations by piecewise constant controls.

For in = 1,2 .... let us partition [0,1*] into m equal

subintervals [t.i,tJt = jA, A = i IT. L et

3 °j

= ({ E Q : it = constant on [t t ,1,.. ,m}.3

On Q weak and strong convergence of a sequence are both equivalent
3m

to pointwise convergence on each subinterval [tj_ 1 ,tj. Ilefine

In 3  Q 3m 1) I (u) = i ) where

0 0 < t <

mt t.

11 I s d , t . t * t.
f s .I + I

2

As m ' (11 II in L 2-norm, for every U E 23. let

X andm 2 3m' n

2Wm = f n 91: C(r2) = 11.

If 71E 1m t E [tj,t j+l then It  is independent of the
increments Y Y for t < s < r under Ti

r s _

We call Y (Y,U) strongly continuous on Q = 2 f3 i

P is continuous when p3 has the l2-norm topology rather than
J3

the weak topology. We also denote by m  the mapping from

S2- 2, such that (YU) (Y,% (U)).
m M

*M
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Lemma 6.1. Let P be bounded and strongly continuous on £22 Let

= ( 71. Thenm m

lir f 2 P(YU)d = f lP(Y,U)dn.
mo 0 2

Proof. By definition

f 2 (Y,U)dnTr f 2 (Y D U)Jd

Since D i(U) - U strongly, the lemma follows from the dominated

convergence theorem.

In particular, we may take in Lemma 6.1 any P bounded
2and continuous on o2 , where Q23 has the weak topology. Thus:

Corollary o.I As m - 7' - '- , for every E

let '21 = 21 n ?I

Lemma__0.2. Let + be bounded on £2 and continuous on any

compact subset of S . Then

iHlf f dr = inf f 'dn.2l s Q2?m 2 ?1~ s2
m

We leave the proof of this lemma, which depends on standard

but tedious arguments, to the Appendix.

In addition to (A1 )-(A 4 ) in §2 we atsst' (A I\' ill %1.

We use the "separated" formula (4.2) for ,1(n).

i
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Theorem 6.1. inf J(T,) = inf J(7).
'l 91 s

Proof. Since ,?1 c 91, we have < Let P E C0 IR
N ) with

0 < p < I, I E C OR, and

It(Y,l) = (- t ),A >' I (It + II['- -,AG , AT >1,

By Lemma 3.2, + satisfies the hypotheses of both lemmas 6.1

and (1.2. Hence, for every s > 0, and T! E ?I ther cxi st in and

SE M 1 such that
m

.1(1 ) .1(H) + L.

Ilhere fore,

inf .() = inf . (H)

Not take such that (x) = 1 for x < n ln( ) i (z ,n

anlid the C.rreSpond i in ( . '1o complete the proof it suffices to

1h O t hat Lin ) 1 Ii ) un if rm Iv on 91 as n . [or re\ j tv , we

I t t We ,I, ,f A

t t n' t ' t

1+ -\ - P d n- I , d



35

where Bn = {<(1+Ixlm,At> > C-lni. Let k > m as in (AS) and

p = -l9. From lol6der's inequality

< ( - n )c(l + x l m ) t > < l dA t f n ] / p l / p

< xC I /P (+ )jRdA /Pt /

Since p I + (p,)-I 1 and (p')- I Z k M,

t: < (I-Pn) (1+lxl At> <5 ln-( Fm)E <l+1xi',At>.

By Theorem 5.3 the expectation on the right side is finite. By

Cauchv" -Schwartz

I+ x m ,At (ITT < IT(B )1/2 1:, < l m  >2 1/2t n [ i t

n

Nioreover,

(J n 
'Ctn 

< + ix lm 'At

!kv uing :;,.in Theorem 5.3, the right side of (*) is bounded above

v cF -  
, where P = min(T, -m). A similar estimate holds if

S( i is rep laced by (G(). We then have, for all n E ?I

tN,

4,I
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0 < J( r) i n(jI) < c2T n-

as required. This proves Theorem 6.1.

Extreme points of 21 . Under the hypotheses of the existence theorem

4.1 or of Theorem 7.2 below, J(7T) is linear and lower semicontinuous

on the compact, convex set 1. Hence, J(r) has a mimimum at some

extreme point of 1. Let

1= {extreme points of ?1}.

It can be shown that s c % e . However, the following counter-

example, due essentially to Varadhan, shows that )(S , ,e .

An example of Cirelson [3] provides a bounded causal drift

coefficient u(t,n), such that the stochastic differential equation

dnt = a(t,n)dt + dY,

with Y a Wiener process, n0 = Y0 = 0 has no strong solution.

However, the Carmeron-Martin-Girsanov formula gives a weak solution,

uniquely determining the joint distribution measure 71' of (Y,n)

on C([O,T];R 2). Let '2 = [-1,1], and Ut = (nt) where

2 -1TeP(u) = (1-u u, -1 < u < 1. Let 4(Y,U) = (Y,n), nt  = q(Ut). T hn

7

iE
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11 = D- I, is in 21, but not in 1s  since no strong solution

exists. In fact, P E We . To see this, suppose that

T= Al 1  + (1-X)f, 0 < X < 1, IT E W1 for i = 1,2. Let 71 = 1.
1 2 1"

Then, for i = 1,2

t

r!(nt = Cx(s,)ds + Yt' 0 < t < T) 1.I t to

Hence, 7! = f', i. = T1, i = 1,2, which implies TT C E 1
1 1

The following characterization [17] of Ie was pointed out

to the authors by J-M. Bismut: R C 91 e if and only if every

bounded R, ~2}-martingale Mt has the form
S t

t
Mt = c + f f dY

with c a constant and ft some integrable predicatable process.

The authors wish to thank V. F. Benes , J-M. Bismut , and

S.R.S. Varadhan for helpful comments in connection with the present

section 6.

h' I
t4
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7. The nondcgenerate case. Let us now assume, instead of (A 1 )

in §2:

(As) a is a bounded, continuous N x N matrix-valued

function on 1RN+M  with bounded inverse. Moreover, 3a/ax.

Cb (RN + ) for i = 1,... ,N.

We also assume;

(A6 ) The distribution ii of X0  has a density

P0 E 1 20RN) "

Let us show that, for fixed (Y,U) E 0 2, the forward

equation (5.4) is still correct, if suitably interpreted in the

L2  theory of parabolic partial differential equations.

Consider the Sobolev space

I1 =v E L2 N): av : L2 OR N i = 1 N}

and f (1)' Let Lt be the bounded linear operator

from H1  to ill, such that for all p, v E I1

Iv> 1 N I dJ dx
JSP V a.. aP. av. dx + f. " ' -7. d

s = I f N 1 3x1 xj i I

N ii ah. a. vdx

+ Y . .. N X
1 ,j=l R x

where <,> denotes here pairing of III and If- and

P
!l7

- .
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N aa.. N
ai(sx) = bi(xYs ,Us) - ! - (x, I 3hf ' "' 2 j  1 xYs )  Y s JIl aj(XYs) ix-"

J-l j=1 1j

In the "regular case" integrations by parts show that equation (5.4)

is equivalent to

(7.1) = p ep, t > 0

p(O) = P0 ' where

1 A1 2(sx) (aY "Vh,YsVh) -b(y.Vh) J i

N @a..
bi(sx) = bi(xYsUs) I- " -J(XY .j=l j

The initial value problem has, for fixed Y,U, a unique solution

[I1

p E L ([0,T];H 1 ) fl C([0,T];L 2N)R )

Theorem 7.1. q(t) = p(t)exp(Yth) is the density of the unnormalized

conditional distribution At

Proof. From (5.6), this is true in the regular case. Following

the proof of Theorem 5.1, we make approximations b0 ,b1 ,h , such" 'n' n' n' n

0 1that n, aan / Xib n,b 'hn  are uniformly bounded and tend

uniformly to G, aO/xi,...,h as n with

a = an > O1I(0 > 0) for all n. U is continuous and tends
n n n -2n 

Nto U strongly in L2 ([O,T]; ?), while 4 n has density Pno e C0 RN)
2 N

tending to P0 strongly in L R ). The density pn (t) of tile
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corresponding Ant satisfies

dp n .
t. L ntPn + enPn

P (0) = P
n no'

* A

where Lnt ,en are obtained by replacing a,...,U above by

n nan)'
" 

U n" "

Rewrite AnPn LnPn + pn and Ap = Lp + ep. Then:

- (P-Pn) = An(P-Pn) + g

p (0) p (0) P P)no

where g = (A-An)P.

It follows from the above hypotheses that there exists c,

independent of n, such that for all v E 11 :

<-AnVV> + clVi 2 >N112
n2 N T

Consequently, by standard PDE arguments, see [1], there exist

c' and c" such that

sup jp(t) - Pn(t)l 22 N 5 c'Ip - P122 N + cL2RgN)  2 2 -1
0<t<T L (R L2(R) L (0,T;H)

One easily checks that gn - 0 in L-(0,T;H

Finally, p (t) _ p(t) in L2ORN). Then

7 
.

i .....
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lir <f,Ant> rli f exp(Yt'h)pndX = f f exp(Yt'h)pdxn-co n-x*f

for any f E C0ORN). However, the proof of Theorem 5.1 showed

that <fAnt> <f,At>. Thus, q = p exp(Yt*h) is the density of

At, which is Theorem 7.1.

YU
Let us write p = p to emphasize the dependence on Y,U

of the solution to the initial value problem (7.1). From (4.2) and

Theorem 7.1 we can rewrite the criterion to be minimized as

(7.2) J(T) ; [ f F(x,Ut ) pY'U(t,x)exp(t-h(x))&dtf Q2 0

+ G (x)pY'U(T,x)exp(YT .h(x))dx]d]T(Y,U).
IR N

Let us suppose:

(A'") Condition (A5) in §4 holds, and F(x,') is convex

N
on QZ/ for all x E IR

Theorem 7.2. There exists T* E I1 such that J(7*) < J(7) for

all It E 91.

Let us first prove two lemmas.

Lemma 7.1. For every P E C0ORN), p > 0, and (YU) E the

function P(V) defined by

IP(V) = fT P (x) F (x ,Vt pY ,U (t, x) exp [Y t"h(x)]dxdt
0 IN

- ]
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is lower-semicontinuous on 3'

Proof: Since P(V) is convex from (A ), it suffices to show
L2

that it is continuous on L (0,T; ) endowed with the strong

topology.

Let Vn - V in L 2(0,T; ) strongly. Let Vn r be

a subsequence such that Vt converges for almost all t. Then

l(V n ' ) + (V). Consequently, any convergent subsequence of

{P(Vn )} has P(V) as its limit. But ) is uniformly bounded

on L2 (0,T; ). It follows that P(Vn) + P(V).

Lemma 7.2. Let (YnUn) 1n (Y,U) in Q 2 Denote pn

Y U
p p = pYU Then for every D bounded open subset of

IRN with smooth boundary,

(a) pn(T) - p(T) in L2 (D) weakly.

(b) n p in L2 ((O,T) x D) strongly.

Proof. Equation (7.1) can be rewritten in the form:

d t + A0P + UtAlp 0

(7.3)

p(O) 0

where for all p, v E HI

'p

I _

- .
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N NA0V> 1 N K kYv dx + .p .v d

<Aopv> - f aij ax. ax . + a .ip dx2 ~= N 1 J i=l 1

JRN

Sf' !_. v dx + 6pv dx.

i=1 f NY ax f N
IR IR

N a---
<AlPV> -- - f e . dx

i=I JRN 1 fN

with

ai(t,x) = -b(xt + I- N (xY I y N ( h(x)
1=1 j ij ax.

yi (tx) = b (xNi 't
)

N a.h 
(.( ,Yt

Yi(tx) = t

N ah
e(t,x) = y'i Il bxx,Yt) W (x)

ti=l 1x

all these coefficients being continuous and bounded functions of

(t Yt).

It follows from standard arguments, after multiplication of

(7.3) by p and making use of (Aj), that there exists a unique

constant K (depending only on suplYti) such that:
t

I
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(7.4) Jp(t) 2  N+ 2p(s)l2 Nds < Ip0 2 + K tp(s)l2  ds.
L2RN) 2 0 (L 2RN)) N- OR

Let now (YnOn) (Y,U) in 2 Then sup Yt is uniformly
n d

bounded, and it follows from (7.4) and (7.3) that (p ,pn(T))

remains in a bounded subset of L2 (0,T;H 1) x L2 (0,T;H - ) x L2 RN).

We can then extract a subsequence, still denoted P n, such that:

(pndt q , p n (T)) + (p1,q,r) weakly, and it is easy to check thatdp

- d , = p(T). Then p E L2(0,T;H If we still denote by pn

and p the restriction of pn and p to [0,T] x D, we have:

(i) pn + - in L2 (0,T;HI(D)) weakly

(ii) d) d in L2 (0,T;f 1 (D)) weakly

(iii) pn(T) p(T) in L2(D) weakly

where D is open, bounded and with smooth boundary.

Since D is bounded, the injection from 1Il(D) into L2 (D)

is compact, and it follows from (i) and (ii) by a compactness Lemma

[11] that

(iv) pn 1) in L2([0,T] x D) strongly.

It remains to show that j = p. Choose any E C0 R ), and

co C(D). Multiply (7.3)n by Ov, and integrate by parts:

I
1 -%0 ! - . " 1 -



p(T)(Pn(T),v) + JT (t) <pn' (An) *v>dt +

+JTUnP(t)<pn, n)

0 t (A1) v> dt = 0()( v

+ JT d (pn~vd

where (,)denotes the inner product in L 2 ORN)

Now ( nv-~ A~v inL2(,T;Hl (D)) strongly and

(An) *v+ A~v in L 2([O,T] x D) strongly. It follows from (i),

(iii) and (iv) that we can take the limit in the above equality.

Since D,v and (P are arbitrary, p =p1, the unique solution of (7.3).

Proof of Theorem 7.2. As in Theorem 4.1, it suffices to show that

J(1T) is lower semi-continuous on W1, and this will be true if

for all P E C 0 R M), P > 0, and H E Cb (IR 1 montone, the following

functional is lower semi-continuous on W

rY T
(T)+ o P(x)G(xU)x (Yth(x))p (t~x)dxdt(Y+I N

A sufficient condition for J to be l.s.c. (lower semi-continuous) on ?I

is that the integrand be l.s.c. on 0

Since H1 is continuous and monotone, it suffices to show that

the following functional is l.s.c. on s
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IYu
(I(Y,U) = Tr P(x)F(x,Ut)exp(Yt'h(x))pY'U(tx)dxdt +IRN

+ fRNP(x)G (x)exp(YTh(x)) pY'U(T,x)dx.

Let now (Y n,U n) be a sequence such that (Yn,Un) (Y,U)

in 0 2, and consider (with the notations of Lemma 7.2):

@(n un) - (Y,U) = I NP[F(U n ) - F(U)lexp(Yt-h)p dxdt +
0

+ JINPF (Un) [exp (YT.h)pn _ exp (Yt h)p] dxdt +

+ TNPG[exp(y.h)p n ( T ) - exp(YT,-h)p(T) ]dx.

When n o, it follows from Lemma 7.1 that lir inf of the first

term in the right hand side is > 0. The two other terms tend to zero

from Lemma 7.2. Then (yn,un) > ®(Y,U).

71 1,-*

- -



APPEND I X

In this Appendix we prove two results used in the paper. Ihe

first result concerns the continuous dependence on the coefficients

and initial state of solutions to martingale problems associated

with stochastic differential equations of the form

(A.1) dX = (6O(t,Xt) + B (t,Xt )IJ t )dt + y(t,Xt )dWt, 0 < t < T

X - x.0

Let us write for brevity Xt  (Wt px ), and consider the "canonical"

sample space 21 t in the notation of §2 For f E C2 OR)+N )
Clet

(A.2) Mf(t) = f(X ) f(X) fL 'f(Xs )ds

N N )
(A.3) Ltf = 1 A f + Y [ (t,x)f + X Y ik (t,x)fw 2 i,j=l ij xij i=l k=l XiWk

+ (O (t,x) + B (t,x)Ut).V f

where A f(w,x) is the Laplacean with respect to w,V the gradient

in x, and a = Yy'. The martingale problem is to find a probability

measure P on {_-CT11}such that P (X6 = (O,x)) = 1 and Mf(t) is a

P' {-1} martingale for every f E C2OR D+). See [14, Ch. 61.

Let us call a function 0 of class Y K if B is Borel

N
measurable on [0,T] × 1 (tx)l < K, and 6(t,) is Lipschitz

J with constant K. If y0 ,61 ,y are of class and U L

then the Ito conditions hold in (A.1). This implies existence and

iC.7



un qLuenessC pa thw i ~C of so l ut i o to . 1 , a1id ,o- (. I tI('1 1v cxi.t tilce

and uniquenesi s of tte solution I t 0 t1L', m0Irt in ic 0)l 1ml:.x

We write I) for the sol ut ion to the mart i nal; e I rob I emIn x

, f tq a I a re rep laced by F , in' n I , ,!.

L emma A I Assume that P ', I a re o I la aIId telid 1t r ,

as n + , uni formly on compact subsets of (0J f ,"

Moreover, assume that I! 1I weakly in 1 0,1 ] ;,) , * x as

n * ' Ihen P - Pnx x
n

Proof. The sequence P 1 P of probab i I it v ineas re is t i i;hit

n

I 1, 1. 11.11. Qie , ,111v ,eq irc a ,. ha< I a 1) 1 1 . , - .

to a I imi t )0 * It suffices to show that P0  is a sol ut ion to the

martingale pro lem. IUniquenesI then implies ' ) x CearIv

Po(X' = (0 ,x)) I Let u write Mf, I in t,. 2) . ) ien

1,l! are replaced by F3 n I I.e t ts sho, that fnr f i xed' n t fl n a 1"

2D+ N1
f E C 0OR ) and compact T c &2

(A.4) lir I1' f(X')ds : J 'f(X')dSn -+co 0o n s s 0 s "

uniformly on [0,T] x r. Since N (t) is a P I V martingale
nf n t

and Pn - P0  (n in a subsequence) (A.4) will imply that Mf (tI

is a P0,{} I martingale. Now

L' f - L'f = (1n -01 )[1 V f + l (11n s )V f + n (sx),
ns s n nsxisUs x 1

where 0 + 0 uniformly on compact subsets of [0,T] 1R Since
n L

,Jn is hounded (see (A4), §2) and 1n - uniformly on

n
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i [r ,\ ) - l(sX ) .i '2 X')Js 0

1n0" J0 ' S ' S .5 X "S

rt
i iit As,\ is =

, frm] or - t 1, '. . To obtain (A 4) it remains to

S 1~t hat

.:lI x I  II Vf, xI1 -I W..f x s -- 0
0-' 5 is S s

tin ,vmlv on t -1 1. Now f (s,.') and Xf are bounded and

I I I). it-, ,it h some const ant K. Moreover, funct ions V E r are

un toin I h oundc(,I arid eq { i cont i nuous . The re fore, iven L > 0 the

in , ai in .Itan NI1) approximated to with in , n i forly With

rc p ct t \ L aol n = 1, 2,..., 1 a finite sum

.\.,' , " I ,x .) [fI ll  II < .'.f( x')dsi

Is f It I t - and x ,...,x' are suitably

h, . . I lhe t he depend on L 1and .' Since 11 U•I ' 1 I

II, t cnV to a as n .. . lbis proves lemma A. 1.

i . In t I ' pa. Ir Ae appeal to Lemm A. I t h ree t imes. In

I rn. 1 2.1 is e akc

,l. ... . . ........ - -- > . ir-
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Yn(t,x) = G(x,Ynt), Y(t,x) = Q(tYt)

k (t,x) = b(xYnt) (t,x) = b (x,Yt)

where f Y -YI - 0 as n - (sup norm). In that case,
= YU 

Z

Px =x . In the proof of Lemma 3.1 we use instead of b

the modified drift coefficient b corresponding to the change of
VY'U

probability measures (3.4). Then Px = Px and Ls is replaced
V

by L. in (3.5). Finally, we use Lemma A.lin the proof of

Theorem 5.1 as indicated there.

In §6 we postponed the proof of Lemma 6.2.

Proof of Lemma 6.2. Since I1 s 1 it suffices to show that,m m

for every c € 1m and E > 0, there exists R1 € s  such that

(#) f y d 1< f pdn + E.

Let us fix A and consder different T = mA, m = 1,2,.... We prove

(#) by induction on m. For m = 1, each admissible control I,

with Ut constant on [0,A) -almost surely, corresponds to a

product measure: f = w x a where w is Wiener measure on

Q C([O,A]; Ij and O is a probability measure on
21

Let u minimize (Y,u)dw(Y) on Ok. The control ' such
Q 21

that Ut = u ,0 t < with probability 1 satisfies

f PdIl T f (Y,u*)dw(Y),

2 2
1 21

. . . .. -- ,- - 4 -



51

22

whee 2 1 Q t space We then have

if T =f f \PYud(~c()> f dr
2 ('i 2l 2

as required.

Now suppose that (#) has been proved when mn is replaced by

m - 1 (i.e., T by T - A). Let (Y,1J) denote thle restriction of

(Y,U) to [0,T-A], and 2 the space of such (Y,UJ). Let T 1)0

the measure on 2 induced from i by restriction. We write

similarly Q M, 2' i when T is replaced by T - A. Let

Ut = U on [T-A,T), where Um E '. Let Ymt = Yt - Yt-T+A on

[T-A,T], and w Wiener measure on C = C([T-A,T];1RM). We canm m

identify Y with (Y,Y ) and piecewise constant U with (11,Um ).

Let

Y(Y,U,u) = fC (Y,YmUu)dwm (Ym),

(Y,U) = min Y(Y,U,u).

2
Since ) is bounded and continuous on any compact subset of m

Sis bounded and continuous on any compact subset of P."
m

Consider any TT E Im, with corresponding IT determined [yv

restriction. By induction there eNi;; ' strict-sense

admissible, such that Ut is cons it:1t on [ti-lt ), = ,...,m-I,

T-l-almost surely, and

f di1  < dT + F

2 2

.. . I . . . . - a.I I I- . ' ,.. ...
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we define T: 2- as follows. Let K c Q be compact with

(2 K) + (--2 -K) < (31 I H ) - 1 ,

where I 1] = sup norm. Choose a partition K = K1 u ... U Kn

with each K. E V and (Y ,U) E K. such that

E: - - C

(Y.iu) < (YU) + - , y(Y,U,u) < )(YiUiu) + -

for all (Y,U) E Ki, u E a . Let u j E" minimize Y(Yi 'Ui'u) on a,

i;1,...,n. Let u0 E %/ be arbitrary; and take

ui, (YU) E Ki

p (Y,UJ) = (

u0 ,  (Y,U) E o2 - K.

The control l C ?l is defined by taking U = C(YU) Ti-almostI mm '

surely, and l the restriction of 71 Then

f PdT'r = ' y(Y'U'q(YU))dI

2 2

<- i (lJK9i Fl + y(Y'U'uo)dI 6i=lf KK0i

•,< dT + 2E< d-f +1 "-

O h h h

On the other hand,



pdl 'n f -Y' (Y,iJ,u)dfl'n"(u)dTlYJ

> (Y x'J) dif (V, )

This gives (sand hence Lemma 6.2.
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